Category: Cabling Standards News


ANSI/TIA-568.3-E Introduces New Polarity Methods

By Dave Valentukonis,

On September 29, 2022, ANSI released the latest revision of the ANSI/TIA-568.3-E, Optical Fiber Cabling and Components Standard.  A couple primary introductions of interest to most users will be the addition of two new connectivity (polarity) methods for array (MPO)-based duplex applications.  The revision also introduced revised guidance on pinning of connectors to better support future transition to end-to-end array systems.

Prior to the release of this revision of the Standard, connectivity methods for array-based duplex applications were limited to Methods A, B & C – each having its own strengths and weaknesses.  ANSI/TIA-568.3-E introduced two new “universal” methods: U1 and U2.  The advantage of these new methods is having the commonality components of Method B without the need for unique MPO*-to-LC modules on each end.  Customers can now use the same MPO-to-LC modules and duplex patch cords on either end of the channel in conjunction with a Type-B trunk – thus simplifying deployments.

Methods U1 and U2 both use Type-B array trunks and A-to-B duplex patch cords.  Where they differ is Method U1 uses Type-A (Key-Up to Key-Down) array adapters and Type-U1 fiber transitions which Method U2 uses Type-B (Key-Up to Key-Up) array adapters and Type-U2 fiber transitions as show below in Table 1 and Figure 1:

Connectivity MethodArray Trunk CableArray AdapterFiber TransitionDuplex Patch Cord
U1Type-BType-AType-U1A-to-B
U2Type-BType-U2

Table 1: New Duplex Connectivity Methods

 

Connectivity Method U1

Figure 1: Connectivity Method U1

 

The key advantage of Method U1 vs Method U2 is that the use of Type-A adapters enables support of both multimode and singlemode applications as standard singlemode MPO connectors utilize opposing angled physical contact (APC) endfaces which are necessary to provide the more stringent return loss requirements of singlemode applications.

Additionally, Method U1 MPO-to-LC modules are ideal for use as a breakout or aggregation module for optical transceiver applications as shown below in Figure 2.  For more information, see Siemon’s Tech Brief 40 to 400G Optical Transceiver Breakout Links.

Breakout Application via Type-U1 MPO-to-LC Module

Figure 2: Breakout Application via Type-U1 MPO-to-LC Module

 

Additional MPO connector pinning guidance was also introduced in this new revision of the Standard to better enable future transition of an array-based duplex system to an end-to-end array system.  When mating MPO connectors – which use alignment pins – it is a requirement that one plug is pinned and the other plug is unpinned.  As MPO active equipment ports are pinned, they accept only unpinned plugs.

Therefore, an optimally designed array-based duplex system intended to support a future transition to an end-to-end array system should specify the following as illustrated in Figures 3 and 4:

  • Array trunk cables should be pinned on both ends
  • MPO connectors within the MPO-to-LC modules should be unpinned
  • Future array patch cords connecting MPO active equipment ports to the array cabling should be unpinned on both ends

 

Recommended Array-based Duplex System Pinning

Figure 3: Recommended Array-based Duplex System Pinning

 

Recommended Array System Pinning

Figure 4: Recommended Array System Pinning

 

With the release of Siemon’s new LightVerse® fiber connectivity platform, Siemon offers Type-U1 MPO-to-LC modules with unpinned MPO connectors in both Base-8 and Base-12 as the standard offering and recommends the use pinned array trunks ensuring the simplest design and implementation of array-based duplex systems, breakout applications and future transition to end-to-end array systems.

* MPO is a generic reference – Siemon uses MTP connectors which are a premium MPO connector for all array connectivity products

Colombian Structured Cabling Standards

By Valerie Maguire,

Working Group 134, Telecomunicaciones Red de Planta Ecterna y Nuevas Technologías, of the Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) develops telecommunications cabling Standards for Colombian information technology (IT) infrastructure. Norma Técnica Colombiana (NTC) Standards specify requirements and best practices for structured cabling systems and technology and are referenced by a wide range of users, designers, and specifiers. Key NTC IT infrastructure Standards include:

Common and Premises Cabling Standards:

  • NTC 6064-1: Tecnología de la información. Cableado genérico para instalaciones de clientes. Parte 1: Requisitos generals (based on ISO/IEC 11801-1)

This Standard specifies the general requirements of a wired network, including its components. The elements defined in this Standard support a wide range of services including voice, data, and video, as well as general remote power requirements (dc power supply over the data network).

  • NTC 6064-2: Tecnología de la información. Cableado genérico para instalaciones de clientes. Parte 2: Instalaciones para oficinas (based onISO/IEC 11801-2)

This Standard specifies the requirements of a wired network inside a building or commercial office. It integrates the requirements of balanced twisted-pair and optical fiber components, as well as specific conditions including, but not limited to, topologies, distances, and guidelines for these types of environments.

  • NTC 6064-6: Tecnología de la Información — Cableado Genérico para las Instalaciones del Cliente — Parte 6: Servicios de Edificios Distribuidos (based on ISO/IEC 11801-6)

This Standard specifies the requirements for a structured cabling network that can support multiple services and applications over specified balanced twisted-pair and optical fiber networks.

  • NTC 6264: Tecnología de la Información. Cableado Genérico para Viviendas (based on ISO/IEC 15018)

This Standard specifies general requirements for wired networks in homes supporting Information and Communication Technologies (ICT), Broadcasting and Communication Technologies (BCT) and Building Commands, Controls and Communications (CCCB) applications.

  • NTC 6323: Cableado Genérico de Telecomunicaciones para las Instalaciones de Cliente (based on ANSI/TIA 568.0-D)

This Standard provides structure, topologies and distances, installation, performance, and testing requirements for generic telecommunications cabling systems.

  • NTC 6324: Infraestructura de Telecomunicaciones para Edificaciones Comerciales (based on ANSI/TIA 568.1-D)

This Standard contains requirements that facilitate the planning and installation of a structured cabling system in a commercial building environment.

  • NTC 6407: Tecnología de la información. Implementación y operación del cableado en los predios del cliente. Planificación e instalación (based on ISO/IEC 14763-2)

This Standard specifies the requirements for the planning, installation and operation of the cabling infrastructure including, but not limited to, the specific conditions for the components and environment, conduits, technical spaces, field tests and functional elements that complement NTC 6064-1 based on IEC 11801-1.

Component Specification Standards:

  • NTC-IEC 60603-7: Conectores para equipo electrónico. Parte 7: Especificación detallada para conectores fijos (hembra) y libres (macho) de 8 vías, no apantallados (based on IEC 60603-7)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, unshielded, fixed (unpinned) and free (pinned), as well as the tests for the connectors of the IEC 60603-7 series of standards. These connectors are intermateable (according to IEC 61076-1 level 2) and interoperable with other connectors of the IEC 60603-7 series.

  • NTC-IEC 60603-7-4: Conectores para equipo electrónico. Parte 7-4: Especificación detallada para conectores de 8 vías libres (macho) y fijos (hembra) no apantallados, para transmisión de datos con frecuencia de hasta 250 MHz (based on IEC 60603-7-4)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, shielded, fixed (unpinned) and free (pinned). Transmission parameters are characterized for frequencies up to 250 MHz. These connectors are commonly used as category 6 connectors in class E cabling systems specified in ISO/IEC 11801-1.

  • NTC-IEC 60603-7-41: Conectores para equipo electrónico. Parte 7-41: Especificación detallada para conectores de 8 vías libres (macho) y fijos (hembra) no apantallados, para transmisión de datos con frecuencia de hasta 500 MHz (based on IEC 60603-7-41)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, shielded, fixed (unpinned) and free (pinned). Transmission parameters are characterized for frequencies up to 500 MHz. These connectors are commonly used as category 6A connectors in class EA cabling systems specified in ISO/IEC 11801-1.

  • NTC-IEC 60603-7-5: Conectores para equipo electrónico. Parte 7-5: Especificación detallada para conectores de 8 vías libres (macho) y fijos (hembra) apantallados, para transmisión de datos con frecuencias de hasta 250 MHz (based on IEC 60603-7-5)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, shielded, fixed (unpinned) and free (pinned). Transmission parameters are characterized for frequencies up to 250 MHz. These connectors are commonly used as category 6 connectors in class E cabling systems specified in ISO/IEC 11801-1.

  • NTC-IEC 60603-7-51: Conectores para equipo electrónico. Parte 7-51: Especificación detallada para conectores de 8 vías libres (macho) y fijos (hembra) apantallados, para transmisión de datos con frecuencias de hasta 500 MHz (based on IEC 60603-7-51)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, shielded, fixed (unpinned) and free (pinned). Transmission parameters are characterized for frequencies up to 500 MHz. These connectors are commonly used as category 6A connectors in class EA cabling systems specified in ISO/IEC 11801-1.

  • NTC-IEC 60603-7-7: Conectores para equipo electrónico. Parte 7-7: Especificación detallada para conectores de 8 vías libres (macho) y fijos (hembra) apantallados, para transmisión de datos con frecuencias de hasta 600 MHz (based on IEC 60603-7-7)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, shielded, fixed (unpinned) and free (pinned). Transmission parameters are characterized for frequencies up to 600 MHz. These connectors are commonly used as category 7A connectors in class FA cabling systems specified in ISO/IEC 11801-1.

  • NTC-IEC 61076-3-104: Conectores para equipos eléctricos y electrónicos. Requisitos del producto. Parte 3-104: Especificación detallada de los conectores de 8 vías, apantallados, libres y fijos para transmisiones de datos con frecuencias de hasta 2 000 MHz (based on IEC 61076-3-104)

This Standard specifies requirements for physical dimensions, as well as mechanical and electrical test requirements for fixed (unpinned) and free (pinned), shielded 8-way connectors. Transmission parameters are characterized for frequencies up to 2,000 MHz. These connectors are commonly used as category 7A connectors in class FA cabling systems and category 8.2 connectors used in class II cabling systems specified in NTC 6064-1 (based on ISO/IEC 11801-1).

  • NTC-IEC 61156-1: Cables con núcleo múltiple y pares/Cuadretes simétricos para comunicaciones digitales. Parte 1: Especificación genérica (based on IEC 61165-1)

This Standard specifies the requirements and test methods for symmetrical multi-core, pair, or quad cables used in structured cabling networks.

Combustion Test Methods:

  • NTC-IEC 60332-1-3: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte1-3: Ensayo de resistencia a la propagación vertical de la llama para un conductor individual aislado o cable. Procedimiento para la determinación de gotas / partículas en llamas (based on IEC 60332‑1‑3)

This Standard specifies a test method for the determination of droplets and particles in flames that is used to evaluate flame spread in balanced twisted-pair or optical fiber cables.

  • NTC-IEC 60332-3-10: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-10: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Equipos de ensayo (based on IEC 60332-3-10)

This Standard specifies test methods to evaluate vertical flame spread for groups of copper and optical fiber cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3-25 of the IEC 60332-3 standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable and self-extinguishing time of the flame compared to IEC 60332-1 including detailing the test equipment and its arrangement and calibration for test methods for the evaluation of vertical propagation under defined conditions.

  • NTC-IEC 60332-3-21: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-21: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Categoría A F/R (based on IEC 60332-3-21)

This Standard specifies test methods to evaluate vertical flame spread in groups of category A F/R C balanced twisted-pair and fiber optic cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3-25 of the IEC 60332-3 Standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable, and self-extinguishing time of the flame compared to IEC 60332-1.

  • NTC-IEC 60332-3-22: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-22: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Categoría A (based on IEC 60332-3-22)

This Standard specifies test methods to evaluate vertical flame spread in groups of category A balanced twisted-pair and optical fiber cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3‑25 of the IEC 60332-3 Standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable, and self-extinguishing time of the flame compared to IEC 60332-1.

  • NTC-IEC 60332-3-23: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-23: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Categoría B (based on IEC 60332-3-23)

This Standard specifies test methods to evaluate vertical flame spread in groups of category B balanced twisted-pair and optical fiber cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3‑25 of the IEC 60332-3 Standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable, and self-extinguishing time of the flame compared to IEC 60332-1.

  • NTC-IEC 60332-3-24: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-24: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Categoría C (based on IEC 60332‑3‑24)

This Standard specifies test methods to evaluate vertical flame spread in groups of category C balanced twisted-pair and optical fiber cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3‑25 of the IEC 60332-3 Standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable, and self-extinguishing time of the flame compared to IEC 60332-1.

  • NTC-IEC 60332-3-25: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-25: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Categoría D (based on IEC 60332‑3‑25)

This Standard specifies test methods to evaluate vertical flame spread in groups of category D balanced twisted-pair and optical fiber cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3‑25 of the IEC 60332-3 Standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable, and self-extinguishing time of the flame compared to IEC 60332-1.

  • NTC-IEC 60754-1: Ensayo de los gases expedidos durante la combustión de materiales procedentes de los cables. Parte 1: Determinación del contenido de gases halógenos ácidos (based on IEC 60754‑1)

This Standard specifies the apparatus and procedure for the determination of the amount of halogen acid gas (other than hydrofluoric acid) produced during the combustion of halogenated polymers and compounds containing halogenated additives used in balanced twisted-pair and optical fiber cable constructions. The method specified in this Standard is intended for the testing of individual components used in a cable construction.

  • NTC-IEC 60754-2: Ensayo de los gases expedidos durante la combustión de materiales procedentes de los cables. Parte 2: Determinación de la acidez (por medida del PH) y la conductividad (based on IEC 60754-2)

This Standard specifies the apparatus and procedure for the determination of the potential corrosivity of gases evolved during the combustion of materials taken from balanced twisted-pair or optical fiber cable constructions by measuring the acidity (pH) and conductivity of an aqueous solution resulting from the gases evolved during the combustion. The general method specified in this standard is intended for the testing of individual components used in a cable construction.

  • NTC-IEC 61034-1: Medida de la densidad de los humos emitidos por cables en combustión bajo condiciones definidas. Parte 1: Equipos de ensayo (based on IEC 61034-1)

This Standard specifies the procedure and equipment for the determination of the density of smoke emitted during combustion by balanced twisted-pair or optical fiber cables under defined conditions.

  • NTC-IEC 61034-2: Medida de la densidad de los humos emitidos por cables en combustión bajo condiciones definidas. Parte 2: Procedimiento de ensayo y requisitos (based on IEC 61034-2)

This Standard specifies the procedure and equipment for the determination of the density of smoke emitted during combustion by balanced twisted-pair or optical fiber cables under defined conditions. Part 2 adds requirements for the preparation of the cables, such as the burning method, and provides recommendations to evaluate the results of test.

Will Wi-Fi 7 Make Cabled Networks Obsolete?

By Valerie Maguire,

As Wi-Fi 7 specifications evolve in the IEEE P802.11be™ “Enhancements for Extremely High Throughput (EHT) Wireless LAN” amendment, there’s the usual buzz about whether wireless networks will make wired networks obsolete. As with previous Wi‑Fi implementations, Wi-Fi 7 will have both associated theoretical maximum (46.1 Gb/s upstream and downstream combined) and “real world” (> 20 Gb/s upstream and downstream combined) throughput. Based on this impressive bandwidth, it’s tempting to think that IEEE 802.11be devices might support transmission speeds on par with structured cabling systems. However, there are two main reasons why this won’t be the case:

  1. Since wireless is a shared media, the maximum available “real world” bandwidth is split between multiple users. Considering that one 802.11be access point (AP) will likely serve 30 to 60 clients, it’s clear there’s substantial opportunity for network slow time due to lack of bandwidth depending on client needs at any given time. This is in significant contrast to a 1000BASE-T network, where each device always has the full 1 Gb/s bandwidth available.
  2. Total bandwidth is specified differently for wired versus wireless systems. For example, since 10GBASE-T transmits in full-duplex (transmitting and receiving over the same cable pairs at the same time), it operates at a maximum rate of 10 Gb/s in the upstream direction and 10 Gb/s in the downstream direction.  This is different from wireless networks, which transmit in half-duplex and whose stated bandwidth is an indication of throughput in both directions combined. What this means is that, with overhead and depending on the number of clients, 802.3be devices can reasonably be expected to have access to an approximate wired‑equivalent bandwidth of 150 ‑ 300 Mb/s. Smaller hand-held Wi-fi devices, such as mobile phones, will have access to even less bandwidth as they typically only have one transmission antenna to to optimize power consumption.

The major shortcoming of an all-wireless data network is the high likelihood of periodic network slow down and saturation due to number of clients and applications in use. The bottom line is that, unless a device is connected to a dedicated (i.e., there are limited or no other clients on the wireless network) 802.3be access point, transmission speed won’t even be comparable to a 1000BASE-T structured cabling network.  Given that market statistics show that enterprises are finally migrating to 10GBASE-T in the work area, it’s extremely unlikely that wireless networks will make cabled networks obsolete anytime soon.

De-Mystifying Type 4 PoE Nominal Current Specifications

By Valerie Maguire,

P = IV is a fundamental engineering formula that describes power in terms of its relationship to current and voltage where:

          P = power, measured in watts (W)
          I = current, measured in amps (A)
          V = voltage measured in volts (V)

Those familiar with this equation and IEEE Std 802.3bt™ might observe that there seem to be inconsistencies between the nominal highest Type 4 PoE current per pair, Class 8 power sourcing equipment (PSE) output power, and PSE output voltage specifications in the amendment.

Table 145‑11 of IEEE Std 802.3bt specifies 90W as the output power of a Class 8 PSE and 52V is the nominal output voltage of all IEEE 802.3 PoE‑compliant injectors, regardless of Type. Inserting these values into the power formula above results in the maximum current for a Type 4 PoE system being:

I = P / V = 90W / 52V = 1.73A

This result is then divided by 2 because two pairsets (a pairset consists of a positive and a negative pair) share the Type 4 PoE current load, which yields:

Maximum Type 4 current per pair = 1.73A / 2 = 866mA

This begs the question – why then does Table 145‑1 of IEEE Std 802.3bt specify the nominal highest current per pair for a Type 4 PSE to be 960mA? The answer is related to the fact that, in the early stages of IEEE Std 802.3bt development, specifications were derived using a maximum Limited Power Source (LPS) value of 100VA. This is equivalent to 100W in dc systems and specified by IEC 60950‑1 as safe for consumer access without the need for specialized tools or certification. While it’s possible for an engineered PoE system to deliver 100W of power and still comply with LPS requirements, a system designed to deliver 90W provides additional operating margin to ensure that the 100VA limitation is never exceeded in any real‑world PoE deployment condition.

Today, an application of PoE that utilizes a maximum current per pair specification of 960mA would be considered a specialized and non-commercial “extended power” implementation having greater powering capacity than permitted by Class 8 parameters.

2020 Conductor Ampacity Code Refinements

By Valerie Maguire,

The 2020 edition of the NFPA 70® National Electrical Code® (NEC) contains minor refinements to Table 725.144, which specifies the maximum current that may be carried by a communications cable conductor as determined by the conductor gage (AWG) size, number of 4-pair cables in a bundle, and mechanical temperature rating of the cable.  This table was first introduced in the 2017 edition of the NFPA 70® NEC and only applies when the power supplied is greater than 60W (i.e., it does not apply to IEEE 802.3 Type 1 (15W), Type 2 (30W), and Type 3 (60W) PoE implementations). The updated table entries:

  1. correct some errors in the original measurements,
  2. increase the number of significant digits shown,
  3. and reflect the final conductor ampacity rating tabulated by the application of true rounding (instead of rounding down) to the measured value.

In most instances, the conductor ampacity rating increases slightly, with the additional precision allowing more freedom in remote powering deployments. In no case, does the conductor ampacity rating decrease.

Siemon shielded category 6A and category 7A cables (having 23 AWG and 22 AWG sized conductors, respectively) are mechanically rated to 75° C (167° F) and support 60W and higher dc power applications with the added benefits of greater heat dissipation, power efficiency, bandwidth, and noise immunity. The yellow highlighted cells from the 2020 NEC Table 725.144 excerpt above confirm that these cables are suitable for support of at least 500 mA per conductor/ 1 A per pair current levels in bundle configurations of up to 192 cables in 30° C (86° F) ambient temperature environments.