Category: Standards


Colombian Structured Cabling Standards

By Valerie Maguire,

Working Group 134, Telecomunicaciones Red de Planta Ecterna y Nuevas Technologías, of the Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) develops telecommunications cabling Standards for Colombian information technology (IT) infrastructure. Norma Técnica Colombiana (NTC) Standards specify requirements and best practices for structured cabling systems and technology and are referenced by a wide range of users, designers, and specifiers. Key NTC IT infrastructure Standards include:

Common and Premises Cabling Standards:

  • NTC 6064-1: Tecnología de la información. Cableado genérico para instalaciones de clientes. Parte 1: Requisitos generals (based on ISO/IEC 11801-1)

This Standard specifies the general requirements of a wired network, including its components. The elements defined in this Standard support a wide range of services including voice, data, and video, as well as general remote power requirements (dc power supply over the data network).

  • NTC 6064-2: Tecnología de la información. Cableado genérico para instalaciones de clientes. Parte 2: Instalaciones para oficinas (based onISO/IEC 11801-2)

This Standard specifies the requirements of a wired network inside a building or commercial office. It integrates the requirements of balanced twisted-pair and optical fiber components, as well as specific conditions including, but not limited to, topologies, distances, and guidelines for these types of environments.

  • NTC 6064-6: Tecnología de la Información — Cableado Genérico para las Instalaciones del Cliente — Parte 6: Servicios de Edificios Distribuidos (based on ISO/IEC 11801-6)

This Standard specifies the requirements for a structured cabling network that can support multiple services and applications over specified balanced twisted-pair and optical fiber networks.

  • NTC 6264: Tecnología de la Información. Cableado Genérico para Viviendas (based on ISO/IEC 15018)

This Standard specifies general requirements for wired networks in homes supporting Information and Communication Technologies (ICT), Broadcasting and Communication Technologies (BCT) and Building Commands, Controls and Communications (CCCB) applications.

  • NTC 6323: Cableado Genérico de Telecomunicaciones para las Instalaciones de Cliente (based on ANSI/TIA 568.0-D)

This Standard provides structure, topologies and distances, installation, performance, and testing requirements for generic telecommunications cabling systems.

  • NTC 6324: Infraestructura de Telecomunicaciones para Edificaciones Comerciales (based on ANSI/TIA 568.1-D)

This Standard contains requirements that facilitate the planning and installation of a structured cabling system in a commercial building environment.

  • NTC 6407: Tecnología de la información. Implementación y operación del cableado en los predios del cliente. Planificación e instalación (based on ISO/IEC 14763-2)

This Standard specifies the requirements for the planning, installation and operation of the cabling infrastructure including, but not limited to, the specific conditions for the components and environment, conduits, technical spaces, field tests and functional elements that complement NTC 6064-1 based on IEC 11801-1.

Component Specification Standards:

  • NTC-IEC 60603-7: Conectores para equipo electrónico. Parte 7: Especificación detallada para conectores fijos (hembra) y libres (macho) de 8 vías, no apantallados (based on IEC 60603-7)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, unshielded, fixed (unpinned) and free (pinned), as well as the tests for the connectors of the IEC 60603-7 series of standards. These connectors are intermateable (according to IEC 61076-1 level 2) and interoperable with other connectors of the IEC 60603-7 series.

  • NTC-IEC 60603-7-4: Conectores para equipo electrónico. Parte 7-4: Especificación detallada para conectores de 8 vías libres (macho) y fijos (hembra) no apantallados, para transmisión de datos con frecuencia de hasta 250 MHz (based on IEC 60603-7-4)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, shielded, fixed (unpinned) and free (pinned). Transmission parameters are characterized for frequencies up to 250 MHz. These connectors are commonly used as category 6 connectors in class E cabling systems specified in ISO/IEC 11801-1.

  • NTC-IEC 60603-7-41: Conectores para equipo electrónico. Parte 7-41: Especificación detallada para conectores de 8 vías libres (macho) y fijos (hembra) no apantallados, para transmisión de datos con frecuencia de hasta 500 MHz (based on IEC 60603-7-41)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, shielded, fixed (unpinned) and free (pinned). Transmission parameters are characterized for frequencies up to 500 MHz. These connectors are commonly used as category 6A connectors in class EA cabling systems specified in ISO/IEC 11801-1.

  • NTC-IEC 60603-7-5: Conectores para equipo electrónico. Parte 7-5: Especificación detallada para conectores de 8 vías libres (macho) y fijos (hembra) apantallados, para transmisión de datos con frecuencias de hasta 250 MHz (based on IEC 60603-7-5)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, shielded, fixed (unpinned) and free (pinned). Transmission parameters are characterized for frequencies up to 250 MHz. These connectors are commonly used as category 6 connectors in class E cabling systems specified in ISO/IEC 11801-1.

  • NTC-IEC 60603-7-51: Conectores para equipo electrónico. Parte 7-51: Especificación detallada para conectores de 8 vías libres (macho) y fijos (hembra) apantallados, para transmisión de datos con frecuencias de hasta 500 MHz (based on IEC 60603-7-51)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, shielded, fixed (unpinned) and free (pinned). Transmission parameters are characterized for frequencies up to 500 MHz. These connectors are commonly used as category 6A connectors in class EA cabling systems specified in ISO/IEC 11801-1.

  • NTC-IEC 60603-7-7: Conectores para equipo electrónico. Parte 7-7: Especificación detallada para conectores de 8 vías libres (macho) y fijos (hembra) apantallados, para transmisión de datos con frecuencias de hasta 600 MHz (based on IEC 60603-7-7)

This Standard specifies requirements for (e.g., physical dimensions, mechanical, electrical, and environmental requirements) for 8-way connectors, shielded, fixed (unpinned) and free (pinned). Transmission parameters are characterized for frequencies up to 600 MHz. These connectors are commonly used as category 7A connectors in class FA cabling systems specified in ISO/IEC 11801-1.

  • NTC-IEC 61076-3-104: Conectores para equipos eléctricos y electrónicos. Requisitos del producto. Parte 3-104: Especificación detallada de los conectores de 8 vías, apantallados, libres y fijos para transmisiones de datos con frecuencias de hasta 2 000 MHz (based on IEC 61076-3-104)

This Standard specifies requirements for physical dimensions, as well as mechanical and electrical test requirements for fixed (unpinned) and free (pinned), shielded 8-way connectors. Transmission parameters are characterized for frequencies up to 2,000 MHz. These connectors are commonly used as category 7A connectors in class FA cabling systems and category 8.2 connectors used in class II cabling systems specified in NTC 6064-1 (based on ISO/IEC 11801-1).

  • NTC-IEC 61156-1: Cables con núcleo múltiple y pares/Cuadretes simétricos para comunicaciones digitales. Parte 1: Especificación genérica (based on IEC 61165-1)

This Standard specifies the requirements and test methods for symmetrical multi-core, pair, or quad cables used in structured cabling networks.

Combustion Test Methods:

  • NTC-IEC 60332-1-3: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte1-3: Ensayo de resistencia a la propagación vertical de la llama para un conductor individual aislado o cable. Procedimiento para la determinación de gotas / partículas en llamas (based on IEC 60332‑1‑3)

This Standard specifies a test method for the determination of droplets and particles in flames that is used to evaluate flame spread in balanced twisted-pair or optical fiber cables.

  • NTC-IEC 60332-3-10: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-10: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Equipos de ensayo (based on IEC 60332-3-10)

This Standard specifies test methods to evaluate vertical flame spread for groups of copper and optical fiber cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3-25 of the IEC 60332-3 standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable and self-extinguishing time of the flame compared to IEC 60332-1 including detailing the test equipment and its arrangement and calibration for test methods for the evaluation of vertical propagation under defined conditions.

  • NTC-IEC 60332-3-21: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-21: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Categoría A F/R (based on IEC 60332-3-21)

This Standard specifies test methods to evaluate vertical flame spread in groups of category A F/R C balanced twisted-pair and fiber optic cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3-25 of the IEC 60332-3 Standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable, and self-extinguishing time of the flame compared to IEC 60332-1.

  • NTC-IEC 60332-3-22: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-22: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Categoría A (based on IEC 60332-3-22)

This Standard specifies test methods to evaluate vertical flame spread in groups of category A balanced twisted-pair and optical fiber cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3‑25 of the IEC 60332-3 Standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable, and self-extinguishing time of the flame compared to IEC 60332-1.

  • NTC-IEC 60332-3-23: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-23: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Categoría B (based on IEC 60332-3-23)

This Standard specifies test methods to evaluate vertical flame spread in groups of category B balanced twisted-pair and optical fiber cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3‑25 of the IEC 60332-3 Standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable, and self-extinguishing time of the flame compared to IEC 60332-1.

  • NTC-IEC 60332-3-24: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-24: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Categoría C (based on IEC 60332‑3‑24)

This Standard specifies test methods to evaluate vertical flame spread in groups of category C balanced twisted-pair and optical fiber cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3‑25 of the IEC 60332-3 Standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable, and self-extinguishing time of the flame compared to IEC 60332-1.

  • NTC-IEC 60332-3-25: Métodos de ensayo para cables eléctricos (energía y comunicaciones) y cables de fibra óptica sometidos a condiciones de Fuego. Parte 3-25: Ensayo de propagación vertical de la llama de cables agrupados – colocados en posición vertical. Categoría D (based on IEC 60332‑3‑25)

This Standard specifies test methods to evaluate vertical flame spread in groups of category D balanced twisted-pair and optical fiber cables. Series 3-10, 3-21, 3-22, 3-23, 3-24, and 3‑25 of the IEC 60332-3 Standard provides more demanding conditions regarding the ignition source, degree of carbonization of the cable, and self-extinguishing time of the flame compared to IEC 60332-1.

  • NTC-IEC 60754-1: Ensayo de los gases expedidos durante la combustión de materiales procedentes de los cables. Parte 1: Determinación del contenido de gases halógenos ácidos (based on IEC 60754‑1)

This Standard specifies the apparatus and procedure for the determination of the amount of halogen acid gas (other than hydrofluoric acid) produced during the combustion of halogenated polymers and compounds containing halogenated additives used in balanced twisted-pair and optical fiber cable constructions. The method specified in this Standard is intended for the testing of individual components used in a cable construction.

  • NTC-IEC 60754-2: Ensayo de los gases expedidos durante la combustión de materiales procedentes de los cables. Parte 2: Determinación de la acidez (por medida del PH) y la conductividad (based on IEC 60754-2)

This Standard specifies the apparatus and procedure for the determination of the potential corrosivity of gases evolved during the combustion of materials taken from balanced twisted-pair or optical fiber cable constructions by measuring the acidity (pH) and conductivity of an aqueous solution resulting from the gases evolved during the combustion. The general method specified in this standard is intended for the testing of individual components used in a cable construction.

  • NTC-IEC 61034-1: Medida de la densidad de los humos emitidos por cables en combustión bajo condiciones definidas. Parte 1: Equipos de ensayo (based on IEC 61034-1)

This Standard specifies the procedure and equipment for the determination of the density of smoke emitted during combustion by balanced twisted-pair or optical fiber cables under defined conditions.

  • NTC-IEC 61034-2: Medida de la densidad de los humos emitidos por cables en combustión bajo condiciones definidas. Parte 2: Procedimiento de ensayo y requisitos (based on IEC 61034-2)

This Standard specifies the procedure and equipment for the determination of the density of smoke emitted during combustion by balanced twisted-pair or optical fiber cables under defined conditions. Part 2 adds requirements for the preparation of the cables, such as the burning method, and provides recommendations to evaluate the results of test.

Will Wi-Fi 7 Make Cabled Networks Obsolete?

By Valerie Maguire,

As Wi-Fi 7 specifications evolve in the IEEE P802.11be™ “Enhancements for Extremely High Throughput (EHT) Wireless LAN” amendment, there’s the usual buzz about whether wireless networks will make wired networks obsolete. As with previous Wi‑Fi implementations, Wi-Fi 7 will have both associated theoretical maximum (46.1 Gb/s upstream and downstream combined) and “real world” (> 20 Gb/s upstream and downstream combined) throughput. Based on this impressive bandwidth, it’s tempting to think that IEEE 802.11be devices might support transmission speeds on par with structured cabling systems. However, there are two main reasons why this won’t be the case:

  1. Since wireless is a shared media, the maximum available “real world” bandwidth is split between multiple users. Considering that one 802.11be access point (AP) will likely serve 30 to 60 clients, it’s clear there’s substantial opportunity for network slow time due to lack of bandwidth depending on client needs at any given time. This is in significant contrast to a 1000BASE-T network, where each device always has the full 1 Gb/s bandwidth available.
  2. Total bandwidth is specified differently for wired versus wireless systems. For example, since 10GBASE-T transmits in full-duplex (transmitting and receiving over the same cable pairs at the same time), it operates at a maximum rate of 10 Gb/s in the upstream direction and 10 Gb/s in the downstream direction.  This is different from wireless networks, which transmit in half-duplex and whose stated bandwidth is an indication of throughput in both directions combined. What this means is that, with overhead and depending on the number of clients, 802.3be devices can reasonably be expected to have access to an approximate wired‑equivalent bandwidth of 150 ‑ 300 Mb/s. Smaller hand-held Wi-fi devices, such as mobile phones, will have access to even less bandwidth as they typically only have one transmission antenna to to optimize power consumption.

The major shortcoming of an all-wireless data network is the high likelihood of periodic network slow down and saturation due to number of clients and applications in use. The bottom line is that, unless a device is connected to a dedicated (i.e., there are limited or no other clients on the wireless network) 802.3be access point, transmission speed won’t even be comparable to a 1000BASE-T structured cabling network.  Given that market statistics show that enterprises are finally migrating to 10GBASE-T in the work area, it’s extremely unlikely that wireless networks will make cabled networks obsolete anytime soon.

De-Mystifying Type 4 PoE Nominal Current Specifications

By Valerie Maguire,

P = IV is a fundamental engineering formula that describes power in terms of its relationship to current and voltage where:

          P = power, measured in watts (W)
          I = current, measured in amps (A)
          V = voltage measured in volts (V)

Those familiar with this equation and IEEE Std 802.3bt™ might observe that there seem to be inconsistencies between the nominal highest Type 4 PoE current per pair, Class 8 power sourcing equipment (PSE) output power, and PSE output voltage specifications in the amendment.

Table 145‑11 of IEEE Std 802.3bt specifies 90W as the output power of a Class 8 PSE and 52V is the nominal output voltage of all IEEE 802.3 PoE‑compliant injectors, regardless of Type. Inserting these values into the power formula above results in the maximum current for a Type 4 PoE system being:

I = P / V = 90W / 52V = 1.73A

This result is then divided by 2 because two pairsets (a pairset consists of a positive and a negative pair) share the Type 4 PoE current load, which yields:

Maximum Type 4 current per pair = 1.73A / 2 = 866mA

This begs the question – why then does Table 145‑1 of IEEE Std 802.3bt specify the nominal highest current per pair for a Type 4 PSE to be 960mA? The answer is related to the fact that, in the early stages of IEEE Std 802.3bt development, specifications were derived using a maximum Limited Power Source (LPS) value of 100VA. This is equivalent to 100W in dc systems and specified by IEC 60950‑1 as safe for consumer access without the need for specialized tools or certification. While it’s possible for an engineered PoE system to deliver 100W of power and still comply with LPS requirements, a system designed to deliver 90W provides additional operating margin to ensure that the 100VA limitation is never exceeded in any real‑world PoE deployment condition.

Today, an application of PoE that utilizes a maximum current per pair specification of 960mA would be considered a specialized and non-commercial “extended power” implementation having greater powering capacity than permitted by Class 8 parameters.

2020 Conductor Ampacity Code Refinements

By Valerie Maguire,

The 2020 edition of the NFPA 70® National Electrical Code® (NEC) contains minor refinements to Table 725.144, which specifies the maximum current that may be carried by a communications cable conductor as determined by the conductor gage (AWG) size, number of 4-pair cables in a bundle, and mechanical temperature rating of the cable.  This table was first introduced in the 2017 edition of the NFPA 70® NEC and only applies when the power supplied is greater than 60W (i.e., it does not apply to IEEE 802.3 Type 1 (15W), Type 2 (30W), and Type 3 (60W) PoE implementations). The updated table entries:

  1. correct some errors in the original measurements,
  2. increase the number of significant digits shown,
  3. and reflect the final conductor ampacity rating tabulated by the application of true rounding (instead of rounding down) to the measured value.

In most instances, the conductor ampacity rating increases slightly, with the additional precision allowing more freedom in remote powering deployments. In no case, does the conductor ampacity rating decrease.

Siemon shielded category 6A and category 7A cables (having 23 AWG and 22 AWG sized conductors, respectively) are mechanically rated to 75° C (167° F) and support 60W and higher dc power applications with the added benefits of greater heat dissipation, power efficiency, bandwidth, and noise immunity. The yellow highlighted cells from the 2020 NEC Table 725.144 excerpt above confirm that these cables are suitable for support of at least 500 mA per conductor/ 1 A per pair current levels in bundle configurations of up to 192 cables in 30° C (86° F) ambient temperature environments.

Preparing for Wi-Fi 6E

By Valerie Maguire,

The Wi-Fi Alliance called the decision by the Federal Communications Commission (FCC) to open 1,200 MHz of spectrum in the 6 GHz band for unlicensed use “historic and visionary” and likely to “transform wireless connectivity for decades to come”. This game‑changing vote, which took place on April 23, 2020, paved the way for broad market adoption of Wi-Fi 6E devices.

Wi-Fi 6E is the new Wi-Fi Alliance terminology for IEEE 802.11ax devices that are capable of operating at 6 GHz, as well as in the 2.4 GHz and 5 GHz spectra already used by Wi-Fi 6 for transmission. The key point here is that Wi‑Fi 6E isn’t a new wireless protocol; rather it’s an expansion of current Wi‑Fi 6 technology into a new and much wider radio frequency band. This capability will reduce latency because there aren’t existing Wi-Fi devices competing for bandwidth in the newly opened spectrum. Likewise, transmission speeds, even when obstructions are present, will significantly increase. Opening the 6 GHz portion of the spectrum increases the total spectrum currently available for Wi-Fi operation on both 2.4 GHz and 5 GHz bands by a factor of roughly five times. This is enough spectrum to offer seven additional completely non-overlapping 160 MHz wide channels or fourteen non‑overlapping 80 MHz wide channels. Wi‑Fi 6E devices are expected to become available quickly as only small changes to the antennae and front ends on existing Wi‑Fi 6 devices are required.

Evolution of Wi-Fi Protocols

Evolution of IEEE 802.11 Wi-Fi Protocols

Since the 6 GHz Wi-Fi 6E enhancement essentially facilitates implementation of the existing Wi‑Fi 6 protocol, there’s no change to the theoretical maximum transmission rate of 9.6 Gb/s or the often-referenced “real world” transmission rate of greater than 5 Gb/s for this application. As a result, there’s no change to Siemon’s recommendation that two category 6A or higher performing cabling drops be available at every wireless access point. This recommendation is also repeated in the recently published TIA-568.0-E Generic and TIA-568.1-E Commercial Building telecommunications cabling Standards.

It’s important to keep in mind that the FCC is an independent agency of the United States government. So, while the outcome of their vote cleared the way for Wi-Fi 6E in the USA, other countries have had to make similar regulatory decisions. The good news is that communications agencies in China, Japan, South Korea, Brazil, Germany, the U.K., France, Canada, and Saudi Arabia have already agreed to open the necessary spectrum to support Wi-Fi 6E. Many more countries are anticipated to adopt this change in the months to come.

Learn more on Our White Paper – Download Now